Extensions 1→N→G→Q→1 with N=C7⋊C8 and Q=C23

Direct product G=N×Q with N=C7⋊C8 and Q=C23
dρLabelID
C23×C7⋊C8448C2^3xC7:C8448,1233

Semidirect products G=N:Q with N=C7⋊C8 and Q=C23
extensionφ:Q→Out NdρLabelID
C7⋊C81C23 = C2×D8⋊D7φ: C23/C2C22 ⊆ Out C7⋊C8112C7:C8:1C2^3448,1208
C7⋊C82C23 = C2×D56⋊C2φ: C23/C2C22 ⊆ Out C7⋊C8112C7:C8:2C2^3448,1212
C7⋊C83C23 = D7×C8⋊C22φ: C23/C2C22 ⊆ Out C7⋊C8568+C7:C8:3C2^3448,1225
C7⋊C84C23 = C2×D4.D14φ: C23/C2C22 ⊆ Out C7⋊C8112C7:C8:4C2^3448,1246
C7⋊C85C23 = C2×D4⋊D14φ: C23/C2C22 ⊆ Out C7⋊C8112C7:C8:5C2^3448,1273
C7⋊C86C23 = C2×D7×D8φ: C23/C22C2 ⊆ Out C7⋊C8112C7:C8:6C2^3448,1207
C7⋊C87C23 = C2×D7×SD16φ: C23/C22C2 ⊆ Out C7⋊C8112C7:C8:7C2^3448,1211
C7⋊C88C23 = C22×D4⋊D7φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8:8C2^3448,1245
C7⋊C89C23 = C22×D4.D7φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8:9C2^3448,1247
C7⋊C810C23 = C22×Q8⋊D7φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8:10C2^3448,1260
C7⋊C811C23 = C22×C8⋊D7φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8:11C2^3448,1190
C7⋊C812C23 = C2×D7×M4(2)φ: C23/C22C2 ⊆ Out C7⋊C8112C7:C8:12C2^3448,1196
C7⋊C813C23 = C22×C4.Dic7φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8:13C2^3448,1234
C7⋊C814C23 = D7×C22×C8φ: trivial image224C7:C8:14C2^3448,1189

Non-split extensions G=N.Q with N=C7⋊C8 and Q=C23
extensionφ:Q→Out NdρLabelID
C7⋊C8.1C23 = D813D14φ: C23/C2C22 ⊆ Out C7⋊C81124C7:C8.1C2^3448,1210
C7⋊C8.2C23 = C2×SD16⋊D7φ: C23/C2C22 ⊆ Out C7⋊C8224C7:C8.2C2^3448,1213
C7⋊C8.3C23 = D28.29D4φ: C23/C2C22 ⊆ Out C7⋊C81124C7:C8.3C2^3448,1215
C7⋊C8.4C23 = C2×Q16⋊D7φ: C23/C2C22 ⊆ Out C7⋊C8224C7:C8.4C2^3448,1217
C7⋊C8.5C23 = D28.30D4φ: C23/C2C22 ⊆ Out C7⋊C82244C7:C8.5C2^3448,1219
C7⋊C8.6C23 = D810D14φ: C23/C2C22 ⊆ Out C7⋊C81124C7:C8.6C2^3448,1221
C7⋊C8.7C23 = D815D14φ: C23/C2C22 ⊆ Out C7⋊C81124+C7:C8.7C2^3448,1222
C7⋊C8.8C23 = D811D14φ: C23/C2C22 ⊆ Out C7⋊C81124C7:C8.8C2^3448,1223
C7⋊C8.9C23 = D8.10D14φ: C23/C2C22 ⊆ Out C7⋊C82244-C7:C8.9C2^3448,1224
C7⋊C8.10C23 = SD16⋊D14φ: C23/C2C22 ⊆ Out C7⋊C81128-C7:C8.10C2^3448,1226
C7⋊C8.11C23 = D7×C8.C22φ: C23/C2C22 ⊆ Out C7⋊C81128-C7:C8.11C2^3448,1229
C7⋊C8.12C23 = D56⋊C22φ: C23/C2C22 ⊆ Out C7⋊C81128+C7:C8.12C2^3448,1230
C7⋊C8.13C23 = C2×C28.C23φ: C23/C2C22 ⊆ Out C7⋊C8224C7:C8.13C2^3448,1261
C7⋊C8.14C23 = C28.C24φ: C23/C2C22 ⊆ Out C7⋊C81124C7:C8.14C2^3448,1275
C7⋊C8.15C23 = C2×D4.9D14φ: C23/C2C22 ⊆ Out C7⋊C8224C7:C8.15C2^3448,1276
C7⋊C8.16C23 = D28.32C23φ: C23/C2C22 ⊆ Out C7⋊C81128+C7:C8.16C2^3448,1288
C7⋊C8.17C23 = D28.33C23φ: C23/C2C22 ⊆ Out C7⋊C81128-C7:C8.17C2^3448,1289
C7⋊C8.18C23 = D28.34C23φ: C23/C2C22 ⊆ Out C7⋊C81128+C7:C8.18C2^3448,1290
C7⋊C8.19C23 = D28.35C23φ: C23/C2C22 ⊆ Out C7⋊C82248-C7:C8.19C2^3448,1291
C7⋊C8.20C23 = C2×D83D7φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8.20C2^3448,1209
C7⋊C8.21C23 = C2×SD163D7φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8.21C2^3448,1214
C7⋊C8.22C23 = C2×D7×Q16φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8.22C2^3448,1216
C7⋊C8.23C23 = C2×Q8.D14φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8.23C2^3448,1218
C7⋊C8.24C23 = D7×C4○D8φ: C23/C22C2 ⊆ Out C7⋊C81124C7:C8.24C2^3448,1220
C7⋊C8.25C23 = D85D14φ: C23/C22C2 ⊆ Out C7⋊C81128+C7:C8.25C2^3448,1227
C7⋊C8.26C23 = D86D14φ: C23/C22C2 ⊆ Out C7⋊C81128-C7:C8.26C2^3448,1228
C7⋊C8.27C23 = C56.C23φ: C23/C22C2 ⊆ Out C7⋊C81128+C7:C8.27C2^3448,1231
C7⋊C8.28C23 = D28.44D4φ: C23/C22C2 ⊆ Out C7⋊C82248-C7:C8.28C2^3448,1232
C7⋊C8.29C23 = C22×C7⋊Q16φ: C23/C22C2 ⊆ Out C7⋊C8448C7:C8.29C2^3448,1262
C7⋊C8.30C23 = C2×D4.8D14φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8.30C2^3448,1274
C7⋊C8.31C23 = C2×D28.2C4φ: C23/C22C2 ⊆ Out C7⋊C8224C7:C8.31C2^3448,1191
C7⋊C8.32C23 = C28.70C24φ: C23/C22C2 ⊆ Out C7⋊C81124C7:C8.32C2^3448,1198
C7⋊C8.33C23 = C56.49C23φ: C23/C22C2 ⊆ Out C7⋊C81124C7:C8.33C2^3448,1203
C7⋊C8.34C23 = C28.76C24φ: C23/C22C2 ⊆ Out C7⋊C81124C7:C8.34C2^3448,1272
C7⋊C8.35C23 = C2×D28.C4φ: trivial image224C7:C8.35C2^3448,1197
C7⋊C8.36C23 = D7×C8○D4φ: trivial image1124C7:C8.36C2^3448,1202
C7⋊C8.37C23 = C2×Q8.Dic7φ: trivial image224C7:C8.37C2^3448,1271

׿
×
𝔽